Convergence Rate for Trigonometric Interpolation of Non-smooth Functions

JÜRGEN PRESTIN

Fachbereich Mathematik, Universität Rostock, Universitätsplatz 1, 2500 Rostock, Germany

AND

YUAN XU*

Department of Mathematics, The University of Texas at Austin, Austin, Texas, 78712

Communicated by Ronald A. DeVore

Received April 15, 1991; accepted in revised form January 29, 1993

The convergence rate of trigonometric interpolation operators in L^{ρ} norm is given in terms of the best one-sided approximation. © 1994 Academic Press, Inc.

1. INTRODUCTION

Let f be a continuous function on $[0, 2\pi]$ and $L_n(f)$ be the trigonometric Lagrange interpolation polynomial on equidistant nodes in $[0, 2\pi)$. A classical theorem of Marcinkiewicz and Zygmund [9, Vol. II, p. 30] shows that $L_n(f)$ converges of f in L^p , $1 \le p < \infty$, and

$$\|L_n(f) - f\|_{\rho} \leq \operatorname{const} E_n(f)_{\infty} \leq \operatorname{const} \omega\left(f; \frac{1}{n}\right)_{\infty},$$

where $E_n(f)_{\infty}$ is the error of the best approximation by trigonometric polynomials of degree *n* in uniform norm, and $\omega(f; \delta)_{\infty}$ is the modulus of continuity of *f*. Recently, similar results have been proved for the mean convergence of $(0, m_1, ..., m_q)$ interpolation by trigonometric polynomials in [8]. For interpolation we do not really need continuity of the underlying function *f*. The interpolatory polynomial and the L^{ρ} error are welldefined already for bounded measurable functions *f* on $[0, 2\pi]$. To get L^{ρ}

^{*} Current address: Dept. of Mathematics, University of Oregon, Eugene, OR 97403-1222.

convergence of the Lagrange interpolation it is sufficient to assume Riemann integrability of f, which can be found already in the book of Zygmund [9, Chap. 10.7]. The purpose of this note is to obtain the order of convergence of $L_n(f)$ and, more generally, $(0, m_1, ..., m_q)$ interpolation in L^p norm for bounded measurable functions f. Since the interpolating polynomials are based on the point values of f, it is unrealistic to expect that the order be given by either $E_n(f)_p$ or $\omega(f; 1/n)_p$. Our order of convergence is given in terms of the error of the best one-sided approximation or in terms of the τ -modulus. However, if f is a smooth function, then we can give the order in terms of $E_n(f^{(s)})_p$. A typical example of the results is

$$\|L_n f - f\|_p \leq \operatorname{const} n^{-1} E_n(f')_p, \qquad 1$$

provided f is an absolutely continuous function and $f' \in L^p$. For Lagrange interpolation, the above question has been dealt with by V. H. Hristov (see, e.g., [2]). The case of Jackson polynomials, i.e., the simplest case of Hermite-Fejér conditions, was treated by V. A. Popov and J. Szabados [4]. Our method is simpler and applies to the general $(m_1, ..., m_q)$ cases.

In Section 2, we introduce notations and the known results that are required. The case of the L^p norms, 1 , is presented in Section 3. Here the Marcinkiewicz-Zygmund inequalities as proved in [5, 8] are the essential tools for the proof. The case <math>p = 1 is of somewhat different character and is discussed in Section 4.

2. PRELIMINARIES

We need the following two classes of trigonometric polynomials: \mathcal{T}_M and $\mathcal{T}_{M,\varepsilon}$ ($\varepsilon = 0$ or 1). A trigonometric polynomial T belongs to \mathcal{T}_M , if

$$T(\theta) = a_0 + \sum_{k=1}^{M} (a_k \cos k\theta + b_k \sin k\theta),$$

and T belongs to $\mathcal{T}_{M,\varepsilon}$ if

$$T(\theta) = a_0 \sum_{k=1}^{M-1} (a_k \cos k\theta + b_k \sin k\theta) + a_M \cos\left(M\theta + \frac{\varepsilon\pi}{2}\right), \quad \varepsilon = 0 \text{ or } 1$$

If $0 < m_1 < \cdots < m_q$ are distinct integers, let E_q and O_q denote the number of even and odd integers in $(m_1, m_2, ..., m_q)$, respectively. It is known [1]

that the problem of interpolation by $T(\theta)$ on the nodes $2k\pi/n$, $0 \le k \le n-1$, is regular for the case of $(0, m_1, ..., m_q)$ interpolation only in the following situations:

$$\begin{array}{ll} (\mathrm{I}) & n=2m+1, \ q=2r, \ E_q-O_q=0, \ T\in \mathcal{T}_M, \ M=nr+m, \\ (\mathrm{IIa}) & n=2m+1, \ q=2r+1, \ E_q-O_q=1, \ T\in \mathcal{T}_{M,0}, \ M=nr+n, \\ (\mathrm{IIb}) & n=2m+1, \ q=2r+1, \ E_q-O_q=-1, \ T\in \mathcal{T}_{M,1}, \ M=nr+n, \\ (\mathrm{III}) & n=2m, \ q=2r, \ E_q-O_q=0, \ T\in \mathcal{T}_{M,0}, \ M=nr+m, \\ (\mathrm{IIV}) & n=2m, \ q=2r+1, \ E_q-O_q=-1, \ T\in \mathcal{T}_{M,1}, \ M=nr+n. \end{array}$$

Let B be the class of 2π -periodic functions that are bounded and measurable on $[0, 2\pi]$. For given n, q, and $f \in B$ we consider the interpolating operator $F_n f = F_{n,(m_1,...,m_q)} f \in \mathcal{T}_M$ or $\mathcal{T}_{M,\varepsilon}$ (according to the conditions I-IV), which is uniquely defined by

$$F_n(f; \theta_{kn}) = f(\theta_{kn}), \qquad 0 \le k \le n - 1,$$

$$F_n^{(j)}(f; \theta_{kn}) = 0, \qquad j = m_1, m_2, ..., m_q, \ 0 \le k \le n - 1,$$

where $\theta_{kn} = 2k\pi/n$, $0 \le k \le n-1$. If $f^{(m_q)} \in B$, we also consider the interpolating polynomial $H_n f = H_{n,(m_1,...,m_q)} f$, which is defined similarly as $F_n f$ but satisfies

$$H_n^{(j)}(f;\theta_{kn}) = f^{(j)}(\theta_{kn}), \quad j = 0, m_1, ..., m_q, 0 \le k \le n-1.$$

In [5, 8], it is proved that $F_n f$ and $H_n f$ converge in L^p norm in the cases I, IIb, III, or IV, while the result in [3] pointed out that the convergence fails for the case IIa. Therefore, from now on we shall always assume that $(0, m_1, ..., m_q)$ satisfies one of the conditions I, IIb, III, or IV.

Let L^p , $1 \le p < \infty$ be the space of 2π -periodic functions for which $||f||_p = (\int_0^{2\pi} |f(x)|^p dx)^{1/p} < \infty$, and C be the space of continuous 2π -periodic functions equipped with the uniform norm $||f||_{\infty} = \max_{0 \le x \le 2\pi} |f(x)|$. For $f \in L^p$, $1 \le p < \infty$, or $f \in C$, we denote as usual the best approximation by trigonometric polynomials in \mathcal{T}_n by $E_n(f)_p$, and the k th order L^p modulus by $\omega_k(f; t)_p$. The following theorem is proved in [5, 8].

THEOREM A. If $f \in C$, then

$$\|F_n f - f\|_p \leq c_p \omega \left(f; \frac{1}{n}\right)_{\infty}, \qquad 1 \leq p < \infty,$$

and if $f^{(m_q)} \in C$, then

$$\|H_nf-f\|_p \leq c_p n^{-m_q} E_n(f^{(m_q)})_\infty, \qquad 1 \leq p < \infty.$$

In this theorem and throughout the rest of the paper the symbol c_p means a positive constant depending only on p and sometimes on the order of derivatives $\{m_1, ..., m_q\}$ or the order of τ -modulus, and c means an absolute constant. Their values may be different from line to line.

The proof of this theorem is based on the Marcinkiewicz-Zygmund inequality, which is also essential for our discussion in the case 1 . We list it as

LEMMA 2.1. Let $T \in \mathcal{T}_M$ or $\mathcal{T}_{M,\varepsilon}$ according to the case considered. Then $(m_0 = 0)$

$$\|T\|_{p} \leq c_{p} \left\{ \sum_{j=0}^{q} \sum_{k=0}^{n-1} |T^{(m_{j})}(\theta_{kn})|^{p} / n^{pm_{j}+1} \right\}^{1/p}, \qquad 1$$

We also need the following counterpart of Lemma 2.1 [8, Lemma 3; 9, Vol. II, p. 29].

LEMMA 2.2. Let $1 \le p < \infty$, and let n > 0, $r \ge 0$ be given integers. Then for any trigonometric polynomial T in \mathcal{T}_m

$$\left(\frac{1}{n}\sum_{k=0}^{n-1}|T(\theta_{kn})|^p\right)^{1/p}\leqslant c_r\,\|T\|_p.$$

To describe the order of convergence for $f \in B$ with respect to the L^p norm, we need the best one-sided approximation of f by means of trigonometric polynomials in \mathcal{T}_n , which is defined by

$$\tilde{E}_n(f)_p = \inf\{\|P - Q\|_p : P, Q \in \mathcal{T}_n, Q(x) \leq f(x) \leq P(x), \forall x\}.$$

This quantity can be characterized by the averaged modulus of smoothness $\tau_k(f; \delta)_p$. Let $\omega_k(f, x, \delta)$ be the local modulus of smoothness of order k at x

$$\omega_k(f, x, \delta) = \sup\{|\Delta_h^k f(t)| : t, t + kh \in [x - k\delta/2, x + k\delta/2]\},\$$

where $\Delta_{h}^{k} f(t)$ is the kth difference with step h at t. Then

$$\tau_k(f;\delta)_p = \|\omega_k(f,\cdot,\delta)\|_p.$$

For the general properties of these quantities, we refer to the survey in [6]. Let W_s^p be the class of 2π -periodic functions defined by

$$W_s^p = \{f \mid f^{(s-1)} \text{ is absolutely continuous and } f^{(s)} \in L^p\}.$$

We need the following

LEMMA 2.3. If
$$f \in W_1^p$$
, then [6, p. 184]

$$\widetilde{E}_n(f)_p \leq \frac{2\pi}{n+1} E_n(f')_p, \qquad (1)$$

and [6, p. 15]

$$\tau_k(f;\delta)_p \leq c \delta \omega_{k-1}(f';\delta)_p, \qquad k \geq 2, \, \delta > 0$$

If $f \in L^{p}$, then [6, p. 169]

$$\widetilde{E}_n(f)_p \leq c_k \tau_k \left(f; \frac{1}{n}\right)_p, \qquad n > k,$$

and [6, p. 14]

$$\omega_k(f;\delta)_p \leq \tau_k(f;\delta)_p, \qquad \delta > 0.$$

3. Results for p > 1

THEOREM 3.1. Let $n \ge 1$ and $f \in B$. Then

$$\|F_n f - f\|_p \leq c_p \left[\tilde{E}_n(f)_p + \omega_{m_1}\left(f; \frac{1}{n}\right)_p \right], \qquad 1
⁽²⁾$$

Proof. Let $T_n \in \mathcal{T}_n$ be the best trigonometric polynomial approximation to f. Then

$$\|f - F_n f\|_p \leq \|f - T_n\|_p + \|T_n - F_n T_n\|_p + \|F_n (f - T_n)\|_p$$

The first term on the right-hand side is just $E_n(f)_p$. According to a theorem in [7, Chap. 4.8.61],

$$\|T_n^{(r)}\|_p \leq c_p n^r \omega_r \left(f; \frac{1}{n}\right)_p,$$

where we note that the constant c_p depends also on r. Therefore, by Lemmas 2.1 and 2.2 the second term is bounded by

$$\|T_{n} - F_{n}T_{n}\|_{p} \leq c_{p} \left(\sum_{j=1}^{q} \sum_{k=0}^{n-1} |T_{n}^{(m_{j})}(\theta_{kn})|^{p}/n^{1+m_{j}p}\right)^{1/p}$$
$$\leq c_{p} \sum_{j=1}^{q} \frac{1}{n^{m_{j}}} \|T_{n}^{(m_{j})}\|_{p}$$
$$\leq c_{p} \omega_{m_{1}} \left(f; \frac{1}{n}\right)_{p},$$

since $\omega_{r+1}(f; \delta)_p \leq 2\omega_r(f; \delta)_p$. To estimate the third term, let $\tilde{E}_n(f)_p = \|P_n - Q_n\|_p$, where $P_n, Q_n \in \mathcal{F}_n$ and $Q_n(x) \leq f(x) \leq P_n(x)$ for all x. Then by Lemma 2.1, Minkowski's inequality, and Lemma 2.2,

$$\begin{split} \|F_{n}(f-T_{n})\|_{p} &\leq c_{p} \left(\frac{1}{n} \sum_{k=0}^{n-1} |f(\theta_{kn}) - T_{n}(\theta_{kn})|^{p}\right)^{1/p} \\ &\leq c_{p} \left[\left(\frac{1}{n} \sum_{k=0}^{n-1} |P_{n}(\theta_{kn}) - Q_{n}(\theta_{kn})|^{p}\right)^{1/p} \\ &+ \left(\frac{1}{n} \sum_{k=0}^{n-1} |Q_{n}(\theta_{kn}) - T_{n}(\theta_{kn})|^{p}\right)^{1/p} \right] \\ &\leq c_{p} \left[\|P_{n} - Q_{n}\|_{p} + \|Q_{n} - T_{n}\|_{p} \right] \\ &\leq c_{p} \left[\tilde{E}_{n}(f)_{p} + \|Q_{n} - f\|_{p} + \|f - T_{n}\|_{p} \right] \\ &\leq c_{p} \left[2\tilde{E}_{n}(f)_{p} + E_{n}(f)_{p} \right]. \end{split}$$

Putting all these estimates together, and using Jackson's theorem

$$E_n(f)_p \leq c_p \omega_r\left(f; \frac{1}{n}\right)_p, \quad r \geq 1,$$

completes the proof.

In general, we cannot replace $\tilde{E}_n(f)_p$ by $\omega(f; 1/n)_p$ in (2). However, the following corollary is true.

COROLLARY 3.2. Let $f \in W_1^p$ and $m_1 > 1$. Then

$$||F_n f - f||_p \leq c_p n^{-1} \omega_{m_1 - 1} \left(f'; \frac{1}{n} \right)_p, \quad 1$$

The proof of this corollary follows easily from Theorem 3.1 and Lemma 2.3. For the operator $H_n f$ we have

THEOREM 3.3. Let $n \ge 1$, $q \ge 0$, and $f^{(s)} \in B$, $s = m_q$. Then

$$\|H_n f - f\|_p \leqslant c_p n^{-s} \tilde{E}_n (f^{(s)})_p.$$
(3)

Proof. Since $H_n f$ preserves trigonometric polynomials in \mathcal{T}_M or $\mathcal{T}_{M,\varepsilon}$ according to the case I-IV, we have

$$\|H_n f - f\|_p \leq \|f - T_n\|_p + \|H_n (f - T_n)\|_p,$$

where $T_n \in \mathcal{T}_n$ is the best trigonometric polynomial approximation to f. Let $Q_{n,j}$ and $P_{n,j}$ be the polynomials in \mathcal{T}_n , such that

$$\tilde{E}_{n}(f^{(m_{j})})_{p} = \|P_{n,j} - Q_{n,j}\|_{p} \text{ and } Q_{n,j}(x) \leq f^{(m_{j})}(x) \leq P_{n,j}(x)$$
 for all x ,

 $0 \leq j \leq q$. Then by Lemmas 2.1 and 2.2

$$\begin{split} \|H_{n}(f-T_{n})\|_{p} &\leq c_{p} \left(\sum_{j=0}^{q} \sum_{k=0}^{n-1} |f^{(m_{j})}(\theta_{kn}) - T_{n}^{(m_{j})}(\theta_{kn})|^{p} / n^{pm_{j}+1} \right)^{1/p} \\ &\leq c_{p} \left[\left(\sum_{j=0}^{q} \sum_{k=0}^{n-1} |P_{n,j}(\theta_{kn}) - Q_{n,j}(\theta_{kn})|^{p} / n^{pm_{j}+1} \right)^{1/p} \\ &+ \left(\sum_{j=0}^{q} \sum_{k=0}^{n-1} |Q_{n,j}(\theta_{kn}) - T_{n}^{(m_{j})}(\theta_{kn})|^{p} / n^{pm_{j}+1} \right)^{1/p} \right] \\ &\leq c_{p} \left[\sum_{j=0}^{q} \|P_{n,j} - Q_{n,j}\|_{p} / n^{m_{j}} + \sum_{j=0}^{q} \|Q_{n,j} - T_{n}^{(m_{j})}\|_{p} / n^{m_{j}} \right] \\ &\leq c_{p} \left[2 \sum_{j=0}^{q} \tilde{E}_{n} (f^{(m_{j})})_{p} / n^{m_{j}} + \sum_{j=0}^{q} E_{n} (f^{(m_{j})})_{p} / n^{m_{j}} \right], \end{split}$$

where the last step follows from the inequality

$$\begin{aligned} \|Q_{n,j} - T_n^{(m_j)}\|_p &\leq \|Q_{n,j} - f^{(m_j)}\|_p + \|f^{(m_j)} - T_n^{(m_j)}\|_p \\ &\leq \widetilde{E}_n (f^{(m_j)})_p + c_p E_n (f^{(m_j)})_p. \end{aligned}$$

Using (1) and the inequality $E_n(f)_p \leq c_p n^{-1} E_n(f')_p$ repeatedly, we get

$$\|H_n(f-T_n)\|_p \leq c_p \left[\tilde{E}_n(f^{(m_q)})_p + E_n(f^{(m_q)})_p \right] / n^{m_q},$$
$$\leq c_p n^{-s} \tilde{E}_n(f^{(s)})_p. \quad \blacksquare$$

COROLLARY 3.4. Let $n \ge 1$, $q \ge 0$, and $f \in W_{s+1}^p$, $s = m_q$. Then

$$\|H_n f - f\|_p \leq c_p n^{-s-1} E_n (f^{(s+1)})_p, \qquad 1$$

This corollary follows from (1) in Lemma 2.3. In particular, for Lagrange interpolation we have

COROLLARY 3.5. Let $n \ge 1$, $f \in W_1^p$. Then

$$\|L_n f - f\|_p \leq c_p n^{-1} E_{M-1}(f')_p, \qquad 1$$

If $f^{(s)}$ is a function of bounded variation $(f^{(s)} \in BV)$, then it is known that [6, p. 10]

$$\tau(f^{(s)};\delta)_p \leq c\delta^{1/p} V(f^{(s)}),$$

where $V(f^{(s)})$ is the variation of $f^{(s)}$ on $[0, 2\pi]$. Thus from Lemma 2.3 we get

COROLLARY 3.6. Let $n \ge 1$ and $f^{(s)} \in BV$, $s \ge 0$. Then

$$||F_n f - f||_p = O(n^{-\min\{m_1, s + 1/p\}}), \quad n \to \infty,$$

and for $s \ge m_a$

$$||H_n f - f||_p \leq c_p n^{-s - 1/p} V(f^{(s)}).$$

4. Results for p = 1

We now consider the L^1 norm estimate. The Marcinkiewicz-Zygmund inequality in the form of Lemma 2.1 is no longer available in this case, although there are some alternative forms for the Lagrange interpolation (see [9, Vol. II, p. 33]).

The L^1 norm estimate is related to the error of quadrature formulas. Let $\mathscr{L}_n(f)$ be the quadrature formula obtained by integrating $L_n(f; x)$ over $[0, 2\pi]$. Then the error

$$|e_n(f)| = \left| \int_0^{2\pi} f(x) \, dx - \mathscr{L}_n(f) \right| = \left| \int_0^{2\pi} \left(f(x) - L_n(f; x) \right) \, dx \right|$$

can be bounded by $\tau(f; 1/n)_1$. For this and the related discussion, we refer to [6, Sect. 3.4, p. 60]. An estimate by $\tau(f; 1/n)_1$ for $||f - L_n f||_1$ would imply the estimate for $|e_n(f)|$. However, it is not likely that such an estimate for $||f - L_n f||_1$ is possible. In general, for $(0, m_1, ..., m_q)$ interpolation one can get L^1 norm estimate in the form of (2) or (3) only with an additional log *n* factor. However, for $L_n f$ such an estimate yields an order

$$\log n \tilde{E}_n(f)_1,$$

which is clearly too rough. Therefore, we do not pursue the estimate in this direction. Instead, we consider an alternative of $L_n f$, namely

$$L_{n,\nu}f = \sigma_{m,\nu}(L_n f), \qquad \nu = \left[\frac{m}{2}\right], \tag{4}$$

where $\sigma_{m,v}f$ are the de la Vallée Poussin means of the Fourier sum operator $S_m f$, i.e.,

$$\sigma_{m,v}f = \frac{1}{v+1}\sum_{k=m-v}^{m} S_k f$$

(see [9, p. 16]). Here we restrict ourselves to the case I with q = r = 0, n = 2m + 1 = 2M + 1. For p > 1, the L^p norm estimate of $\sigma_{m,v} f - f$ follows readily from the results in Section 3. To estimate the L^1 norm, we need

LEMMA 4.1. Let $T \in \mathcal{T}_M$. Then

$$\|\sigma_{m,v}T\|_1 \leq c \left(\frac{1}{n}\sum_{k=0}^{n-1}|T(\theta_{kn})|\right).$$

Proof. Since $v = \lfloor m/2 \rfloor$, it follows from [9, Vol. I, p. 115] that $\|\sigma_{m,v}\|_{\infty}$ is uniformly bounded. Thus we can prove this inequality by modifying the method in [9, Vol. II, p. 29]. We take a function g such that

$$\|\sigma_{m,v}T\|_1 = \int_0^{2\pi} (\sigma_{m,v}T) g \, dx, \qquad \|g\|_{\infty} = 1.$$

Since

$$\int_0^{2\pi} (S_k f) g \, dx = \int_0^{2\pi} (S_k f) (S_k g) \, dx = \int_0^{2\pi} f(S_k g) \, dx,$$

we have

$$\|\sigma_{m,v} T\|_{1} = \int_{0}^{2\pi} (\sigma_{m,v} T) g \, dx = \int_{0}^{2\pi} T(\sigma_{m,v} g) \, dx$$
$$= \frac{1}{n} \sum_{k=0}^{n-1} T(\theta_{kn}) (\sigma_{m,v} g) (\theta_{kn})$$
$$\leqslant \|\sigma_{m,v}\|_{\infty} \cdot \|g\|_{\infty} \left(\frac{1}{n} \sum_{k=0}^{n-1} |T(\theta_{kn})|\right)$$
$$\leqslant c \left(\frac{1}{n} \sum_{k=0}^{n-1} |T(\theta_{kn})|\right).$$

THEOREM 4.2. Let $f \in B$. Then for v = [m/2] $||L_{n,v}f - f||_1 \le c(E_{m-v}(f)_1 + \tilde{E}_m(f)_1).$ *Proof.* Let $T_v \in \mathscr{T}_{m-v}$ satisfy $E_{m-v}(f)_1 = ||f - T_v||_1$. Since it follows from the definition of $\sigma_{m,v}f$ that $\sigma_{m,v}T_v = T_v$, we also have $L_{n,v}T_v = \sigma_{m,v}L_nT_v = \sigma_{m,v}T_v = T_v$. Therefore

$$\|L_{n,\nu}f - f\|_1 \leq E_{m-\nu}(f)_1 + \|L_{n,\nu}(f - T_{\nu})\|_1.$$

By (4) and Lemma 4.1 we have

$$\|L_{n,\nu}(f-T_{\nu})\|_{1} = \|\sigma_{m,\nu}L_{n}(f-T_{\nu})\|_{1}$$
$$\leq c \left(\frac{1}{n}\sum_{k=0}^{n-1}|f(\theta_{kn})-T_{\nu}(\theta_{kn})|\right).$$

The rest of the proof follows exactly as in the proof of Theorem 3.1.

COROLLARY 4.3. Let $n \ge 1$ and $f \in BV$. Then

$$\|L_{n,v}f - f\|_1 \leq cn^{-1}V(f).$$

It is not clear if one can use $\sigma_{m,v}$ for the general $(0, m_1, ..., m_q)$ interpolation.

ACKNOWLEDGMENTS

The authors thank Dr. E. Quak and a referee for their helpful comments.

REFERENCES

- 1. A. S. CAVARETTA, A. SHARMA, AND R. S. VARGA, Lacunary trigonometric interpolation on equidistant nodes, *in* "Quantitative Approximation" (R. A. DeVore and K. Scherer, Eds.), pp. 63-80, Academic Press, San Diego, 1980.
- 2. V. H. HRISTOV, Best onesided approximations and mean approximations by interpolating polynomials of periodic functions, *Math. Balkanica (N. S.)* 3, No. 3-4 (1989), 418-429.
- P. NEVAI AND P. VÉRTESI, Divergence of trigonometric lacunary interpolation, Acta Math. Hungar. 45 (1985), 381-391.
- V. A. POPOV AND J. SZABADOS, On the convergence and saturation of the Jackson polynomials in L_p spaces, J. Approx. Theory Appl. 1, No. 1 (1984), 1-10.
- A. SHARMA AND Y. XU, Mean convergence of trigonometric interpolants on equidistant nodes: Birkhoff data, Bull. Polish Acad. Sci. 39, No. 3-4 (1991), 199-206.
- 6. B. SENDOV AND V. A. POPOV, "The Averaged Moduli of Smoothness," Wiley, New York, 1988.
- 7. A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable," English translation, Pergamon, Elmsford, NY, 1963.
- Y. XU, The generalized Marcinkiewicz-Zygmund inequality for trigonometric polynomials, J. Math. Anal. Appl. 161 (1991), 447-456.
- 9. A. ZYGMUND, "Trigonometric Series," 2nd ed., Cambridge Univ. Press, London/New York, 1959.