# Convergence Rate for Trigonometric Interpolation of Non-smooth Functions 

Jürgen Prestin<br>Fachbereich Mathematik, Universität Rostock, Universitätsplatz 1, 2500 Rostock, Germany

AND
Yuan Xu*

Department of Mathematics, The University of Texas at Austin, Austin, Texas, 78712

Communicated by Ronald A. DeVore
Received April 15, 1991; accepted in revised form January 29, 1993


#### Abstract

The convergence rate of trigonometric interpolation operators in $L^{p}$ norm is given in terms of the best one-sided approximation. © 1994 Academic Press, Inc.


## 1. Introduction

Let $f$ be a continuous function on $[0,2 \pi]$ and $L_{n}(f)$ be the trigonometric Lagrange interpolation polynomial on equidistant nodes in $[0,2 \pi$ ). A classical theorem of Marcinkiewicz and Zygmund [9, Vol. II, p. 30] shows that $L_{n}(f)$ converges of $f$ in $L^{p}, 1 \leqslant p<\infty$, and

$$
\left\|L_{n}(f)-f\right\|_{p} \leqslant \text { const } E_{n}(f)_{\infty} \leqslant \operatorname{const} \omega\left(f ; \frac{1}{n}\right)_{\infty},
$$

where $E_{n}(f)_{\infty}$ is the error of the best approximation by trigonometric polynomials of degree $n$ in uniform norm, and $\omega(f ; \delta)_{\infty}$ is the modulus of continuity of $f$. Recently, similar results have been proved for the mean convergence of $\left(0, m_{1}, \ldots, m_{q}\right)$ interpolation by trigonometric polynomials in [8]. For interpolation we do not really need continuity of the underlying function $f$. The interpolatory polynomial and the $L^{p}$ error are welldefined already for bounded measurable functions $f$ on $[0,2 \pi]$. To get $L^{p}$

* Current address: Dept. of Mathematics, University of Oregon, Eugene, OR 97403-1222.
convergence of the Lagrange interpolation it is sufficient to assume Riemann integrability of $f$, which can be found already in the book of Zygmund [9, Chap. 10.7]. The purpose of this note is to obtain the order of convergence of $L_{n}(f)$ and, more generally, ( $0, m_{1}, \ldots, m_{q}$ ) interpolation in $L^{p}$ norm for bounded measurable functions $f$. Since the interpolating polynomials are based on the point values of $f$, it is unrealistic to expect that the order be given by either $E_{n}(f)_{p}$ or $\omega(f ; 1 / n)_{p}$. Our order of convergence is given in terms of the error of the best one-sided approximation or in terms of the $\tau$-modulus. However, if $f$ is a smooth function, then we can give the order in terms of $E_{n}\left(f^{(s)}\right)_{p}$. A typical example of the results is

$$
\left\|L_{n} f-f\right\|_{p} \leqslant \text { const } n^{-1} E_{n}\left(f^{\prime}\right)_{p}, \quad 1<p<\infty,
$$

provided $f$ is an absolutely continuous function and $f^{\prime} \in L^{p}$. For Lagrange interpolation, the above question has been dealt with by V. H. Hristov (see, e.g., [2]). The case of Jackson polynomials, i.e., the simplest case of Hermite-Fejér conditions, was treated by V. A. Popov and J. Szabados [4]. Our method is simpler and applies to the general ( $m_{1}, \ldots, m_{q}$ ) cases.
In Section 2, we introduce notations and the known results that are required. The case of the $L^{p}$ norms, $1<p<\infty$, is presented in Section 3. Here the Marcinkiewicz-Zygmund inequalities as proved in $[5,8]$ are the essential tools for the proof. The case $p=1$ is of somewhat different character and is discussed in Section 4.

## 2. Preliminaries

We need the following two classes of trigonometric polynomials: $\mathscr{T}_{M}$ and $\mathscr{T}_{M, \varepsilon}\left(\varepsilon=0\right.$ or 1 ). A trigonometric polynomial $T$ belongs to $\mathscr{T}_{M}$, if

$$
T(\theta)=a_{0}+\sum_{k=1}^{M}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right),
$$

and $T$ belongs to $\mathscr{T}_{M, \varepsilon}$ if

$$
\begin{aligned}
T(\theta)= & a_{0} \sum_{k=1}^{M-1}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right) \\
& +a_{M} \cos \left(M \theta+\frac{\varepsilon \pi}{2}\right), \quad \varepsilon=0 \text { or } 1 .
\end{aligned}
$$

If $0<m_{1}<\cdots<m_{q}$ are distinct integers, let $E_{q}$ and $O_{\varphi}$ denote the number of even and odd integers in ( $m_{1}, m_{2}, \ldots, m_{q}$ ), respectively. It is known [1]
that the problem of interpolation by $T(\theta)$ on the nodes $2 k \pi / n$, $0 \leqslant k \leqslant n-1$, is regular for the case of ( $0, m_{1}, \ldots, m_{q}$ ) interpolation only in the following situations:

$$
\begin{align*}
& n=2 m+1, q=2 r, E_{q}-O_{q}=0, T \in \mathscr{T}_{M}, M=n r+m,  \tag{I}\\
& n=2 m+1, q=2 r+1, E_{q}-O_{q}=1, T \in \mathscr{T}_{M, 0}, M=n r+n,  \tag{IIa}\\
& n=2 m+1, q=2 r+1, E_{q}-O_{q}=-1, T \in \mathscr{T}_{M, 1}, M=n r+n,  \tag{IIb}\\
& n=2 m, q=2 r, E_{q}-O_{q}=0, T \in \mathscr{T}_{M, 0}, M=n r+m,  \tag{III}\\
& n=2 m, q=2 r+1, E_{q}-O_{q}=-1, T \in \mathscr{T}_{M, 1}, M=n r+n .
\end{align*}
$$

Let $B$ be the class of $2 \pi$-periodic functions that are bounded and measurable on $[0,2 \pi]$. For given $n, q$, and $f \in B$ we consider the interpolating operator $F_{n} f=F_{n,\left(m_{1}, \ldots, m_{q}\right)} f \in \mathscr{T}_{M}$ or $\mathscr{T}_{M, \varepsilon}$ (according to the conditions I-IV), which is uniquely defined by

$$
\begin{gathered}
F_{n}\left(f ; \theta_{k n}\right)=f\left(\theta_{k n}\right), \quad 0 \leqslant k \leqslant n-1, \\
F_{n}^{(j)}\left(f ; \theta_{k n}\right)=0, \quad j=m_{1}, m_{2}, \ldots, m_{q}, 0 \leqslant k \leqslant n-1,
\end{gathered}
$$

where $\theta_{k n}=2 k \pi / n, 0 \leqslant k \leqslant n-1$. If $f^{\left(m_{q}\right)} \in B$, we also consider the interpolating polynomial $H_{n} f=H_{n,\left(m_{1}, \ldots, m_{q}\right)}$, which is defined similarly as $F_{n} f$ but satisfies

$$
H_{n}^{(j)}\left(f ; \theta_{k n}\right)=f^{(j)}\left(\theta_{k n}\right), \quad j=0, m_{1}, \ldots, m_{q}, 0 \leqslant k \leqslant n-1 .
$$

In [5,8], it is proved that $F_{n} f$ and $H_{n} f$ converge in $L^{p}$ norm in the cases I, IIb, III, or IV, while the result in [3] pointed out that the convergence fails for the case IIa. Therefore, from now on we shall always assume that ( $0, m_{1}, \ldots, m_{q}$ ) satisfies one of the conditions I, IIb, III, or IV.

Let $L^{p}, 1 \leqslant p<\infty$ be the space of $2 \pi$-periodic functions for which $\|f\|_{p}=\left(\int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{1 / p}<\infty$, and $C$ be the space of continuous $2 \pi$-periodic functions equipped with the uniform norm $\|f\|_{\infty}=\max _{0 \leqslant x \leqslant 2 \pi}|f(x)|$. For $f \in L^{p}, 1 \leqslant p<\infty$, or $f \in C$, we denote as usual the best approximation by trigonometric polynomials in $\mathscr{T}_{n}$ by $E_{n}(f)_{p}$, and the $k$ th order $L^{p}$ modulus by $\omega_{k}(f ; t)_{p}$. The following theorem is proved in $[5,8]$.

Theorem A. If $f \in C$, then

$$
\left\|F_{n} f-f\right\|_{p} \leqslant c_{p} \omega\left(f ; \frac{1}{n}\right)_{\infty}, \quad 1 \leqslant p<\infty
$$

and if $f^{\left(m_{q}\right)} \in C$, then

$$
\left\|H_{n} f-f\right\|_{p} \leqslant c_{p} n^{-m_{q}} E_{n}\left(f^{\left(m_{q}\right)}\right)_{\infty}, \quad 1 \leqslant p<\infty .
$$

In this theorem and throughout the rest of the paper the symbol $c_{p}$ means a positive constant depending only on $p$ and sometimes on the order of derivatives $\left\{m_{1}, \ldots, m_{q}\right\}$ or the order of $\tau$-modulus, and $c$ means an absolute constant. Their values may be different from line to line.

The proof of this theorem is based on the Marcinkiewicz-Zygmund inequality, which is also essential for our discussion in the case $1<p<\infty$. We list it as

Lemma 2.1. Let $T \in \mathscr{T}_{M}$ or $\mathscr{T}_{M, \varepsilon}$ according to the case considered. Then ( $m_{0}=0$ )

$$
\|T\|_{p} \leqslant c_{p}\left\{\sum_{j=0}^{q} \sum_{k=0}^{n-1}\left|T^{\left(m_{j}\right)}\left(\theta_{k n}\right)\right|^{p} / n^{p m_{j}+1}\right\}^{1 / p}, \quad 1<p<\infty
$$

We also need the following counterpart of Lemma 2.1 [8, Lemma 3; 9, Vol. II, p. 29].

Lemma 2.2. Let $1 \leqslant p<\infty$, and let $n>0, r \geqslant 0$ be given integers. Then for any trigonometric polynomial $T$ in $\mathscr{T}_{r n}$

$$
\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|T\left(\theta_{k n}\right)\right|^{p}\right)^{1 / p} \leqslant c_{r}\|T\|_{p}
$$

To describe the order of convergence for $f \in B$ with respect to the $L^{p}$ norm, we need the best one-sided approximation of $f$ by means of trigonometric polynomials in $\mathscr{T}_{n}$, which is defined by

$$
\tilde{E}_{n}(f)_{p}=\inf \left\{\|P-Q\|_{p}: P, Q \in \mathscr{T}_{n}, Q(x) \leqslant f(x) \leqslant P(x), \forall x\right\}
$$

This quantity can be characterized by the averaged modulus of smoothness $\tau_{k}(f ; \delta)_{p}$. Let $\omega_{k}(f, x, \delta)$ be the local modulus of smoothness of order $k$ at $x$

$$
\omega_{k}(f, x, \delta)=\sup \left\{\left|\Delta_{h}^{k} f(t)\right|: t, t+k h \in[x-k \delta / 2, x+k \delta / 2]\right\}
$$

where $\Delta_{h}^{k} f(t)$ is the $k$ th difference with step $h$ at $t$. Then

$$
\tau_{k}(f ; \delta)_{p}=\left\|\omega_{k}(f, ; \delta)\right\|_{p}
$$

For the general properties of these quantities, we refer to the survey in [6]. Let $W_{s}^{p}$ be the class of $2 \pi$-periodic functions defined by

$$
W_{s}^{p}=\left\{f \mid f^{(s-1)} \text { is absolutely continuous and } f^{(s)} \in L^{p}\right\}
$$

We need the following
Lemma 2.3. If $f \in W_{1}^{p}$, then $[6$, p. 184]

$$
\begin{equation*}
\tilde{E}_{n}(f)_{p} \leqslant \frac{2 \pi}{n+1} E_{n}\left(f^{\prime}\right)_{p} \tag{1}
\end{equation*}
$$

and $[6, \mathrm{p} .15]$

$$
\tau_{k}(f ; \delta)_{p} \leqslant c \delta \omega_{k-1}\left(f^{\prime} ; \delta\right)_{p}, \quad k \geqslant 2, \delta>0
$$

If $f \in L^{p}$, then [6, p. 169]

$$
\tilde{E}_{n}(f)_{p} \leqslant c_{k} \tau_{k}\left(f ; \frac{1}{n}\right)_{p}, \quad n>k
$$

and $[6, \mathrm{p} .14]$

$$
\omega_{k}(f ; \delta)_{p} \leqslant \tau_{k}(f ; \delta)_{p}, \quad \delta>0 .
$$

## 3. Results for $p>1$

Theorem 3.1. Let $n \geqslant 1$ and $f \in B$. Then

$$
\begin{equation*}
\left\|F_{n} f-f\right\|_{p} \leqslant c_{p}\left[\tilde{E}_{n}(f)_{p}+\omega_{m_{1}}\left(f ; \frac{1}{n}\right)_{p}\right], \quad 1<p<\infty \tag{2}
\end{equation*}
$$

Proof. Let $T_{n} \in \mathscr{T}_{n}$ be the best trigonometric polynomial approximation to $f$. Then

$$
\left\|f-F_{n} f\right\|_{p} \leqslant\left\|f-T_{n}\right\|_{p}+\left\|T_{n}-F_{n} T_{n}\right\|_{p}+\left\|F_{n}\left(f-T_{n}\right)\right\|_{p}
$$

The first term on the right-hand side is just $E_{n}(f)_{p}$. According to a theorem in [7, Chap. 4.8.61],

$$
\left\|T_{n}^{(r)}\right\|_{p} \leqslant c_{p} n^{r} \omega_{r}\left(f ; \frac{1}{n}\right)_{p}
$$

where we note that the constant $c_{p}$ depends also on $r$. Therefore, by Lemmas 2.1 and 2.2 the second term is bounded by

$$
\begin{aligned}
\left\|T_{n}-F_{n} T_{n}\right\|_{p} & \leqslant c_{p}\left(\sum_{j=1}^{q} \sum_{k=0}^{n-1}\left|T_{n}^{\left(m_{j}\right)}\left(\theta_{k n}\right)\right|^{p} / n^{1+m_{j} p}\right)^{1 / p} \\
& \leqslant c_{p} \sum_{j=1}^{q} \frac{1}{n^{m_{j}}}\left\|T_{n}^{\left(m_{j}\right)}\right\|_{p} \\
& \leqslant c_{p} \omega_{m_{1}}\left(f ; \frac{1}{n}\right)_{p}
\end{aligned}
$$

since $\omega_{r+1}(f ; \delta)_{p} \leqslant 2 \omega_{r}(f ; \delta)_{p}$. To estimate the third term, let $\widetilde{E}_{n}(f)_{p}=$ $\left\|P_{n}-Q_{n}\right\|_{p}$, where $P_{n}, Q_{n} \in \mathscr{T}_{n}$ and $Q_{n}(x) \leqslant f(x) \leqslant P_{n}(x)$ for all $x$. Then by Lemma 2.1, Minkowski's inequality, and Lemma 2.2,

$$
\begin{aligned}
\left\|F_{n}\left(f-T_{n}\right)\right\|_{p} \leqslant & c_{p}\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|f\left(\theta_{k n}\right)-T_{n}\left(\theta_{k n}\right)\right|^{p}\right)^{1 / p} \\
\leqslant & c_{p}\left[\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|P_{n}\left(\theta_{k n}\right)-Q_{n}\left(\theta_{k n}\right)\right|^{p}\right)^{1 / p}\right. \\
& \left.+\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|Q_{n}\left(\theta_{k n}\right)-T_{n}\left(\theta_{k n}\right)\right|^{p}\right)^{1 / p}\right] \\
\leqslant & c_{p}\left[\left\|P_{n}-Q_{n}\right\|_{p}+\left\|Q_{n}-T_{n}\right\|_{p}\right] \\
\leqslant & c_{p}\left[\widetilde{E}_{n}(f)_{p}+\left\|Q_{n}-f\right\|_{p}+\left\|f-T_{n}\right\|_{p}\right] \\
\leqslant & c_{p}\left(2 \widetilde{E}_{n}(f)_{p}+E_{n}(f)_{p}\right) .
\end{aligned}
$$

Putting all these estimates together, and using Jackson's theorem

$$
E_{n}(f)_{p} \leqslant c_{p} \omega_{r}\left(f ; \frac{1}{n}\right)_{p}, \quad r \geqslant 1
$$

completes the proof.
In general, we cannot replace $\tilde{E}_{n}(f)_{p}$ by $\omega(f ; 1 / n)_{p}$ in (2). However, the following corollary is true.

Corollary 3.2. Let $f \in W_{1}^{p}$ and $m_{1}>1$. Then

$$
\left\|F_{n} f-f\right\|_{p} \leqslant c_{p} n^{-1} \omega_{m_{1}-1}\left(f^{\prime} ; \frac{1}{n}\right)_{p}, \quad 1<p<\infty
$$

The proof of this corollary follows easily from Theorem 3.1 and Lemma 2.3. For the operator $H_{n} f$ we have

Theorem 3.3. Let $n \geqslant 1, q \geqslant 0$, and $f^{(s)} \in B, s=m_{q}$. Then

$$
\begin{equation*}
\left\|H_{n} f-f\right\|_{\rho} \leqslant c_{p} n^{-s} \tilde{E}_{n}\left(f^{(s)}\right)_{p} \tag{3}
\end{equation*}
$$

Proof. Since $H_{n} f$ preserves trigonometric polynomials in $\mathscr{T}_{M}$ or $\mathscr{T}_{M, \varepsilon}$ according to the case I-IV, we have

$$
\left\|H_{n} f-f\right\|_{p} \leqslant\left\|f-T_{n}\right\|_{p}+\left\|H_{n}\left(f-T_{n}\right)\right\|_{p},
$$

where $T_{n} \in \mathscr{T}_{n}$ is the best trigonometric polynomial approximation to $f$. Let $Q_{n, j}$ and $P_{n, j}$ be the polynomials in $\mathscr{T}_{n}$, such that

$$
\tilde{E}_{n}\left(f^{\left(m_{j}\right)}\right)_{p}=\left\|P_{n, j}-Q_{n, j}\right\|_{p} \text { and } Q_{n, j}(x) \leqslant f^{\left(m_{j}\right)}(x) \leqslant P_{n, j}(x) \quad \text { for all } x,
$$

$0 \leqslant j \leqslant q$. Then by Lemmas 2.1 and 2.2

$$
\begin{aligned}
\left\|H_{n}\left(f-T_{n}\right)\right\|_{p} \leqslant & c_{p}\left(\sum_{j=0}^{q} \sum_{k=0}^{n-1}\left|f^{\left(m_{j}\right)}\left(\theta_{k n}\right)-T_{n}^{\left(m_{j}\right)}\left(\theta_{k n}\right)\right|^{p / n^{p m_{j}+1}}\right)^{1 / p} \\
\leqslant & c_{p}\left[\left(\sum_{j=0}^{q} \sum_{k=0}^{n-1}\left|P_{n, j}\left(\theta_{k n}\right)-Q_{n, j}\left(\theta_{k n}\right)\right|^{p} / n^{p m_{j}+1}\right)^{1 / p}\right. \\
& \left.+\left(\sum_{j=0}^{q} \sum_{k=0}^{n-1}\left|Q_{n, j}\left(\theta_{k n}\right)-T_{n}^{\left(m_{j}\right)}\left(\theta_{k n}\right)\right|^{p} / n^{p m_{j}+1}\right)^{1 / p}\right] \\
\leqslant & c_{p}\left[\sum_{j=0}^{q}\left\|P_{n, j}-Q_{n, j}\right\|_{p} / n^{m_{j}}+\sum_{j=0}^{q}\left\|Q_{n, j}-T_{n}^{\left(m_{j}\right)}\right\|_{p} / n^{m_{j}}\right] \\
\leqslant & c_{p}\left[2 \sum_{j=0}^{q} \widetilde{E}_{n}\left(f^{\left(m_{j}\right)}\right)_{p /} / n^{m_{j}}+\sum_{j=0}^{q} E_{n}\left(f^{\left(m_{j}\right)}\right)_{p} / n^{m_{j}}\right]
\end{aligned}
$$

where the last step follows from the inequality

$$
\begin{aligned}
\left\|Q_{n, j}-T_{n}^{\left(m_{j}\right)}\right\|_{p} & \leqslant\left\|Q_{n, j}-f^{\left(m_{j}\right)}\right\|_{p}+\left\|f^{\left(m_{j}\right)}-T_{n}^{\left(m_{j}\right)}\right\|_{p} \\
& \leqslant \tilde{E}_{n}\left(f^{\left(m_{j}\right)}\right)_{p}+c_{p} E_{n}\left(f^{\left(m_{j}\right)}\right)_{p} .
\end{aligned}
$$

Using (1) and the inequality $E_{n}(f)_{p} \leqslant c_{p} n^{-1} E_{n}\left(f^{\prime}\right)_{p}$ repeatedly, we get

$$
\begin{aligned}
\left\|H_{n}\left(f-T_{n}\right)\right\|_{p} & \leqslant c_{p}\left[\widetilde{E}_{n}\left(f^{\left(m_{q}\right)}\right)_{p}+E_{n}\left(f^{\left(m_{q}\right)}\right)_{p}\right] / n^{m_{q}} \\
& \leqslant c_{p} n^{-s} \widetilde{E}_{n}\left(f^{(s)}\right)_{p}
\end{aligned}
$$

Corollary 3.4. Let $n \geqslant 1, q \geqslant 0$, and $f \in W_{s+1}^{p}, s=m_{q}$. Then

$$
\left\|H_{n} f-f\right\|_{p} \leqslant c_{p} n^{-s-1} E_{n}\left(f^{(s+1)}\right)_{p}, \quad 1<p<\infty
$$

This corollary follows from (1) in Lemma 2.3. In particular, for Lagrange interpolation we have

Corollary 3.5. Let $n \geqslant 1, f \in W_{1}^{p}$. Then

$$
\left\|L_{n} f-f\right\|_{p} \leqslant c_{p} n^{-1} E_{M-1}\left(f^{\prime}\right)_{p}, \quad 1<p<\infty
$$

If $f^{(s)}$ is a function of bounded variation $\left(f^{(s)} \in B V\right)$, then it is known that $[6$, p. 10]

$$
\tau\left(f^{(s)} ; \delta\right)_{p} \leqslant c \delta^{1 / p} V\left(f^{(s)}\right)
$$

where $V\left(f^{(s)}\right)$ is the variation of $f^{(s)}$ on $[0,2 \pi]$. Thus from Lemma 2.3 we get

Corollary 3.6. Let $n \geqslant 1$ and $f^{(s)} \in B V, s \geqslant 0$. Then

$$
\left\|F_{n} f-f\right\|_{p}=O\left(n^{-\min \left\{m_{1}, s+1 / p\right\}}\right), \quad n \rightarrow \infty
$$

and for $s \geqslant m_{q}$

$$
\left\|H_{n} f-f\right\|_{p} \leqslant c_{p} n^{-s-1 / p} V\left(f^{(s)}\right)
$$

## 4. Results for $p=1$

We now consider the $L^{1}$ norm estimate. The Marcinkiewicz-Zygmund inequality in the form of Lemma 2.1 is no longer available in this case, although there are some alternative forms for the Lagrange interpolation (see [9, Vol. II, p. 33]).

The $L^{1}$ norm estimate is related to the error of quadrature formulas. Let $\mathscr{L}_{n}(f)$ be the quadrature formula obtained by integrating $L_{n}(f ; x)$ over $[0,2 \pi]$. Then the error

$$
\left|e_{n}(f)\right|=\left|\int_{0}^{2 \pi} f(x) d x-\mathscr{L}_{n}(f)\right|=\left|\int_{0}^{2 \pi}\left(f(x)-L_{n}(f ; x)\right) d x\right|
$$

can be bounded by $\tau(f ; 1 / n)_{1}$. For this and the related discussion, we refer to $\left[6\right.$, Sect. 3.4, p. 60]. An estimate by $\tau(f ; 1 / n)_{1}$ for $\left\|f-L_{n} f\right\|_{1}$ would imply the estimate for $\left|e_{n}(f)\right|$. However, it is not likely that such an estimate for $\left\|f-L_{n} f\right\|_{1}$ is possible. In general, for ( $0, m_{1}, \ldots, m_{q}$ ) interpolation one can get $L^{1}$ norm estimate in the form of (2) or (3) only with an additional $\log n$ factor. However, for $L_{n} f$ such an estimate yields an order

$$
\log n \tilde{E}_{n}(f)_{1}
$$

which is clearly too rough. Therefore, we do not pursue the estimate in this direction. Instead, we consider an alternative of $L_{n} f$, namely

$$
\begin{equation*}
L_{n, v} f=\sigma_{m, v}\left(L_{n} f\right), \quad v=\left[\frac{m}{2}\right] \tag{4}
\end{equation*}
$$

where $\sigma_{m, v} f$ are the de la Vallée Poussin means of the Fourier sum operator $S_{m} f$, i.e.,

$$
\sigma_{m, v} f=\frac{1}{v+1} \sum_{k=m-v}^{m} S_{k} f
$$

(see [9, p. 16]). Here we restrict ourselves to the case I with $q=r=0$, $n=2 m+1=2 M+1$. For $p>1$, the $L^{p}$ norm estimate of $\sigma_{m, v} f-f$ follows readily from the results in Section 3. To estimate the $L^{1}$ norm, we need

Lemma 4.1. Let $T \in \mathscr{T}_{M}$. Then

$$
\left\|\sigma_{m, v} T\right\|_{1} \leqslant c\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|T\left(\theta_{k n}\right)\right|\right) .
$$

Proof. Since $v=[m / 2]$, it follows from [9, Vol. I, p. 115] that $\left\|\sigma_{m, v}\right\|_{\infty}$ is uniformly bounded. Thus we can prove this inequality by modifying the method in [9, Vol. II, p. 29]. We take a function $g$ such that

$$
\left\|\sigma_{m, v} T\right\|_{1}=\int_{0}^{2 \pi}\left(\sigma_{m, v} T\right) g d x, \quad\|g\|_{\infty}=1
$$

## Since

$$
\int_{0}^{2 \pi}\left(S_{k} f\right) g d x=\int_{0}^{2 \pi}\left(S_{k} f\right)\left(S_{k} g\right) d x=\int_{0}^{2 \pi} f\left(S_{k} g\right) d x
$$

we have

$$
\begin{aligned}
\left\|\sigma_{m, v} T\right\|_{1} & =\int_{0}^{2 \pi}\left(\sigma_{m, v} T\right) g d x=\int_{0}^{2 \pi} T\left(\sigma_{m, v} g\right) d x \\
& =\frac{1}{n} \sum_{k=0}^{n-1} T\left(\theta_{k n}\right)\left(\sigma_{m, v} g\right)\left(\theta_{k n}\right) \\
& \leqslant\left\|\sigma_{m, v}\right\|_{\infty} \cdot\|g\|_{\infty}\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|T\left(\theta_{k n}\right)\right|\right) \\
& \leqslant c\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|T\left(\theta_{k n}\right)\right|\right)
\end{aligned}
$$

Theorem 4.2. Let $f \in B$. Then for $v=[m / 2]$

$$
\left\|L_{n, v} f-f\right\|_{1} \leqslant c\left(E_{m-v}(f)_{1}+\tilde{E}_{m}(f)_{1}\right) .
$$

Proof. Let $T_{v} \in \mathscr{T}_{m-v}$ satisfy $E_{m-v}(f)_{1}=\left\|f-T_{v}\right\|_{1}$. Since it follows from the definition of $\sigma_{m, v} f$ that $\sigma_{m, v} T_{v}=T_{v}$, we also have $L_{n, v} T_{v}=$ $\sigma_{m, v} L_{n} T_{v}=\sigma_{m, v} T_{v}=T_{v}$. Therefore

$$
\left\|L_{n, v} f-f\right\|_{1} \leqslant E_{m-v}(f)_{1}+\left\|L_{n, v}\left(f-T_{v}\right)\right\|_{1}
$$

By (4) and Lemma 4.1 we have

$$
\begin{aligned}
\left\|L_{n, v}\left(f-T_{v}\right)\right\|_{1} & =\left\|\sigma_{m, v} L_{n}\left(f-T_{v}\right)\right\|_{1} \\
& \leqslant c\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|f\left(\theta_{k n}\right)-T_{v}\left(\theta_{k n}\right)\right|\right)
\end{aligned}
$$

The rest of the proof follows exactly as in the proof of Theorem 3.1.
Corollary 4.3. Let $n \geqslant 1$ and $f \in B V$. Then

$$
\left\|L_{n, v} f-f\right\|_{1} \leqslant c n^{-1} V(f)
$$

It is not clear if one can use $\sigma_{m, v}$ for the general $\left(0, m_{1}, \ldots, m_{q}\right)$ interpolation.

## Acknowledgments

The authors thank Dr. E. Quak and a referee for their helpful comments.

## References

1. A. S. Cavaretta, A. Sharma, and R. S. Varga, Lacunary trigonometric interpolation on equidistant nodes, in "Quantitative Approximation" (R. A. DeVore and K. Scherer, Eds.), pp. 63-80, Academic Press, San Diego, 1980.
2. V. H. Hristov, Best onesided approximations and mean approximations by interpolating polynomials of periodic functions, Math. Balkanica (N. S.) 3, No. 3-4 (1989), 418-429.
3. P. Nevai and P. Vertesi, Divergence of trigonometric lacunary interpolation, Acta Math. Hungar. 45 (1985), 381-391.
4. V. A. Popov and J. Szabados, On the convergence and saturation of the Jackson polynomials in $L_{p}$ spaces, J. Approx. Theory Appl. 1, No. 1 (1984), 1-10.
5. A. Sharma and Y. Xu, Mean convergence of trigonometric interpolants on equidistant nodes: Birkhoff data, Bull. Polish Acad. Sci. 39, No. 3-4 (1991), 199-206.
6. B. Sendov and V. A. Popov, "The Averaged Moduli of Smoothness," Wiley, New York, 1988.
7. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," English translation, Pergamon, Elmsford, NY, 1963.
8. Y. Xu , The generalized Marcinkiewicz-Zygmund inequality for trigonometric polynomials, J. Math. Anal. Appl. 161 (1991), 447-456.
9. A. Zygmund, "Trigonometric Series," 2nd ed., Cambridge Univ. Press, London/New York, 1959.
